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Retrieving rain rate on land with the help of the Tropical Rainfall

Measuring Mission (TRMM) Microwave Imager (TMI) radiometer

data is difficult because of the highly variable nature of the land

surface. By developing a theoretical link between the observations of

this passive radiometer and the measurements of the Precipitation

Radar (PR) onboard the TRMM satellite, we are able to derive

relationships between the TMI and PR observations. These

relationships permit us to retrieve rain rate from intense and decaying

thunderstorms, as well as the areas away from such features. This

radiometer rain rate estimation method shows a good correlation

with the radar rain rate observations over areas on the order of 200

km x 200 km, as well as on much finer spatial scales (N20 km x 20 km).

In the absence of a satellite-borne radar, this technique is useful to

obtain the rain information from the passive microwave radiometer.
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Abstract: Overtropicallandregions,rain rate maxima in mesoscale convective systems revealed

by the Precipitation Radar (PR) flown on the Tropical Rainfall Measuring Mission (TRMM)

satellite are found to correspond to thunderstorms, i.e., Cbs. These Cbs are reflected as minima in

the 85 GHz brightness temperature, T85, observed by the TRMM Microwave Imager (TMI)

radiometer. Because the magnitude of TMI observations do not discriminate satisfactorily

convective and stratiform rain, we developed here a different TMI discrimination method. In this

method, two types of Cbs, strong and weak, are inferred from the Laplacian of T85 at minima.

Then, to retrieve rain rate, where T85 is less than 270 K, a weak (background) rain rate is deduced

using T85 observations. Furthermore, over a circular area of 10 km radius centered at the location

of each T85 minimum, an additional Cb component of rain rate is added to the background rain

rate. This Cb component of rain rate is estimated with the help of(T19-T37) and T85 observations.

Initially, our algorithm is calibrated with the PR rain rate measurements from 20 MCS rain events.

After calibration, this method is applied to TMI data taken from several tropical land regions. With

the help of the PR observations, we show that the spatial distribution and intensity of rain rate over

land estimated from our algorithm are better than those given by the current TMI-Version-5

Algorithm. For this reason, our algorithm may be used to improve the current state of rain retrievals

on land.
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1. Introduction

Rain rate is highly variable in space and time. Because of this, measuring rain rate globally

with the help of remote sensors becomes a challenging problem. Ground-based radars have been

extensively used to sense rain, and they have provided considerable insight into the nature of

hydrometeors over limited regions. In the recent Tropical Rainfall Measuring Mission 1 (TRMM),

the satellite-borne Precipitation Radar (PR) and TRMM Microwave Imager (TMI) radiometer have

been flown together on a satellite to estimate rain rate over the entire tropics. In the forthcoming

Global Precipitation Measurement (GPM) mission, microwave radiometers will be flown on a

constellation of satellites to take into account the diurnal variability of rain rate over the globe (E. A.

Smith, personal communication). However, as a benchmark, only one of these GPM satellites will

contain a precipitation radar. So, it is necessary to have a microwave radiometer rain retrieval

technique that can be used in the absence of supporting information given by a precipitation radar.

Satellite-bome precipitation radar is an active remote sensing device that can give the profile

ofreflectivity in the atmosphere with a fine vertical resolution. After correcting radar reflectivity for

attenuation, one can infer the rain rate near the surface and the vertical profile of hydrometeors in a

column of the atmosphere (Iguchi et al., 2000). It may be noted that in this procedure, the

hydrometeor particle size distribution (PSD) is assumed. Also, the data from the satellite

precipitation radar can be utilized to discriminate convective and stratiform rain regions. On the

other hand, the brightness temperature (Tb) observations made by a satellite-borne passive

microwave radiometer lack some of the above properties. Radiometer observations depend on the

absorption, emission, and scattering properties of the constituents in an entire column of the

1 Tropical Rainfall Measuring Mission: A satellite mission launched in November 1997 to quantify
tropical rainfall and atmospheric latent heating (see Simpson et al., 1996). Onboard the TRMM
satellite, there is the conical-scanning TRMM Microwave Imager radiometer that has dual-
polarization channels at 10.7, 19.3, 37, and 85.5 GHz and a vertical-polarization channel at about 21
GHz. In addition, there is the cross-track-scanning Precipitation Radar that operates at a frequency of
13.8 GHz
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atmosphere. Thus, estimatesof near-surfacerain rate from the radiometerdataare generally

contaminatedby all otherhydrometeorsinaverticalcolumnof theatmosphere.

For the purposeof retrievingrain rate from microwaveradiometers,Kummerowet al.

(1989)developedanalgorithmthatutilizesresultsobtainedfromanumericalcloudresolvingmodel

(CRM). Using theCRM, informationabouttheverticalprofile of hydrometeorsandsurfacerain

rate is generatedfor footprint-sizedregions (-10 kin). For eachprofile of CRM generated

hydrometeors,a setofTbs - i.e.,T85, T37, T21, T19, andT10 - aresimulatedusing a radiative

transfermodel. Thesehydrometeorprofiles,andthecorrespondingsetsof simulatedTbs, serveas

a lookup table. Givena setof observedTbs from a microwaveradiometer,onecan in principle

match to theseTbs a suitablehydrometeorprofile and correspondingrain rate basedon the

informationin the lookup table. Kummerowet al. (1989)usedamultipleregressiontechniqueto

performsuchmatching.In a laterstudy,Kummerowet al. (1996)replacedthis matchingtechnique

with a Bayesianstatisticalprocedure.In general,for a givensetof observedTbs, therecanbe a

significantdiversityin thehydrometeorprofilesthatcanbematchedfrom thelookuptable. So,to

obtainanacceptablehydrometeorprofileandrainrate,additionalapriori constraintsareincludedin

thismatchingprocedure(Kummerow,2001). Theseconstraintsdependupon thelimitationsof the

CRM andradiativetransfermodels.

An important considerationin microwaveradiometer rain retrieval methods is the

relationshipbetweev._rain r_e _,adsca_erSingof m.i_,owaverMiation by ice pa._c!es. How_7_,

Scholset al. (1999) show that this scatteringdependson the densityof ice particles. From a

theoreticalsimulation study, Prabhakaraet al. (2002) show that knowledgeof the vertical

distributionof thedensity,andalsothephase,ofhydrometeorsisnecessaryin orderto differentiate

convectiverain from stratiformrain. Unfortunately,the densityand the verticaldistribution of

hydrometeorscannotbedeterminedfrom themagnitudeandpolarizationof microwaveradiometer



brightnesstemperatures.As a result,microwaveradiometersfail to differentiatesatisfactorily

convectiverainfrom stratiformrain. Thiscanleadto significanterrorsin rainretrievals.

In orderto overcomethis weakness,in therain retrievalmethodsof Olson et al. (1999),

Hongetal. (1999),andKummerowet al. (2001),informationdeducedfrom thespatialgradientof

thebrightnesstemperaturesand/orpolarizationin the 85 GHz measurementsis usedto estimatea

convectiverain fractionin eachradiometerfootprint. This procedureis tunedempiricallywith the

observationsof aradar. Apparently,this retrievalmethoddoesnot work overland(Kummerowet

al.,2001). Forthisreason,to retrieverain rateon land,Kummerowet al. modifiedtheirmethodto

incorporatetheconceptsof amultipleregressiontechniquedevelopedby Grodyet al. (1991). This

radiometer rain retrieval method constitutes the current Version 5 TRMM algorithm to estimate rain

rate from TMI data over land. In this study, we will address this retrieval method as the TMI-

Version-5 (TMI-V5 fi-om hereafter) Algorithm.

In an alternate approach, using microwave radiometer data Prabhakara et al. (2000 -

hereafter PIWD) developed a rain retrieval model that can be calibrated with the rain rate derived

from PR. This method takes advantage of the fact that there is a theoretical link between rain rate

and Tbs observed by a microwave radiometer (e.g., Wu and Weinman, 1984). In the study of

PIWD, the information obtained from the spatial distribution of Tbs is used differently. A local

minimum in the 85 GHz observed by TMI is used to identify the presence of a thunderstorm, or

Cb. At the location of each minimum, the Laplacian of T85, v-i8_, is computed, llaen, the

magnitude of this Laplacian is used to categorize each Cb as weak or strong. With the help of these

Cbs, PIWD showed that it is possible to estimate rain rate over both land and ocean satisfactorily.

Over land areas, rain retrieval from microwave radiometer data is complicated by terrain and

also by changes in surface emissivity produced by soil type, vegetation, and soil moisture (e.g.,

Conner and Petty, 1998). In addition, the microwave signal in the long wavelength channels
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representingemissionfrom rain dropsis Neatly diminished,becauseof reducedcontrastbetween

thetemperatureof dry landandtherain clouds.Recognizingtheseproblems,ourgoal in this study

is to improvetheTMI-V5 Algorithmoverland.

2. Comparison of TMI and PR Observations Pertaining to Rain Over Tropical Land

In convection, rain drops grow by the collision-coalescence mechanism primarily below the

freezing level. Above the freezing level, the relatively strong vertical motions lead to a layer

containing particles of water and ice in mixed-phased form (see Smith et al., 1999; Bringi et al.,

1997; Balakrishnan and Zmic, 1990; and Sax and Keller, 1980). The typical scale of convective

cells (- 2 kin) leads to appreciable horizontal variability in radar reflectivity factor, Z (hereafter

termed refiectivity), measurements in the convective regime.

In stratiform rain regions, the growth ofhydrometeors takes place mainly above the freezing

level, and is due to deposition of water vapor onto slowly-falling ice particles that form large, low-

density ice aggregates (snow flakes) (see Houze, 1997). Below the freezing level, snow flakes melt

within about a distance of 500 m. Under favorable conditions, this melting layer manifests itself as

a "bright band", or peak, in the radar reflectivity profile. Furthermore, radar refiectivity

measurements show that there is a relatively uniform distribution of hydrometeors in the horizontal.

From the above discussion, it follows that the presence of a bright band in the vertical

profile of Z and/or horizontal variability of Z leads to inference of rain type from radar data. Such

robust information is missing in the microwave radiometer observations. For this reason, using the

rain type classification of PR, we have partitioned subjectively the nearly simultaneously TMI data

taken over rain scenes in tropical land areas into convective and stratiform categories. These

partitioned TMI data can be analyzed with the help of the vertical profile of retlectivity and near-



surfacerategivenby PR to gainabetterinsight into the microwaveradiometerobservations,and

therebyhelpimproverainretrievalfi-omTMI.

2.A. Maps and Cross-Sections

The near-surface rain rate deduced from PR observations has a horizontal resolution of

about 4.3 km x 4.3 km. The satellite observations of PR are arranged uniformly at a spacing of

about 4.3 km both along and across scan lines. On the other hand, the footprints of the TMI 85

GHz (vertical and horizontal polarization channels) are approximately 5.0 km x 7.0 km. These

footprints are separated by about 5.0 km along conical scan lines and about 14 km across scan

lines. This scan pattern of TMI degrades the effective resolution of the 85 GHz channel compared

to that of the PR. The TMI radiometer contains additional channels in vertical and horizontal

polarization near 10, 19, and 37 GHz that have a resolution of about 40, 20, and 10 km, respectively.

Furthermore, TMI has a 21 GHz channel in vertical polarization that has a resolution similar to that

of 19 GHz. In this study, we are scrutinizing the information given by the PR and the TMI in the

19, 37, and 85 GHz channels. The TMI 10 and 21 GHz channels are not included in this

investigation. This is because the 10 GHz channel has a relatively large footprint, and the

information given by the 21 GHz channel is very similar to that of 19 GHz. Also, we consider only

the vertical polarization measurements made by TMI, because they are affected less by the surface

emissivity. Note, for simplicity that all Tbs indicated from hereafter represent vertical polarization.

In Figures la-e, we show respectively maps of T19, T37, (T19-T37), and T85, as well as a

map of PR near-surface rain rate, for a mesoscale convective system (MCS) that occurred over the

Southeast United States on 5 June 1998. From these figures, we note that the spatial pattern of PR

rain rate compares well with that of T85, but not with that of T19 or T37. We find in the map of

T85 that there are localized minima with a scale of about 10 to 20 km. In Figure lf, the locations of

these minima in T85 for this MCS are indicated with the letters S and w. These minima in T85
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Figure 1: Maps of a) T19, b) T37, c) (T19-T37), d) T85, e) PR near-surface rain rate, and f) local

minima in T85 for a mesoscale convective system observed by the TRMM satellite on 5 June 1998

over the Southeast United States. In Fig. If, local minima that are inferred to be strong and weak Cbs

from the T85 spatial information are denoted with the letters S and w, respectively. Note that the

brightness temperatures T 19, T37, and T85 represent vertical polarization measurements.



correspondcloselyin spacetomaximain rainrate,i.e.,thunderstorms(Cbs),in themapof PRrain

rate. StrongandweakCbsdeducedfrom theTMI dataaredenotedin Fig. If with thelettersS and

w, respectively.Outsideof Cbs,theaveragerainrateis muchweakerthanthatwithin Cbs.

From Figs. la and lb, we observethatthe 19GHz and37 GHz channelson land do not

revealrain informationdearly. However,amapof thedifference,(T19-T37),presentedin Figure

lc compareswell with thePRrainratepatterns(seeFigure le), andit is similarto themapof T85

shownin Figureld. Suchinformationgivenby themicrowaveradiometerandtheradaris noticed

overwidelydifferenttropicallandregions.

We showin Figure2a,a verticalcrosssectionof theradarreflectivitytakenfrom TRMM

PRalongasub-satellitetrack. This crosssection,whichstartsat (35.1° N, 90.6° W) andendsat

(35.0° N, 87.6° W), correspondsto the sameMCS depictedin Figs. la-f. The PR reflectivity

belowthe1km levelis not shownin this figure to avoidproblemsrelatedto signalclutterarising

from surfacetopography.We notefrom Fig. 2a thatthe leadingedgeof the storm,with its tall

convectivetowers,is near 88° W. High reflecfivitycores(> 30 dBZ) that extendwell abovethe

freezinglevel (-5.0 km) characterizetheseconvectivetowers. To the west of theseconvective

towers,from 88.6° W to 90.3° W, andabovethefreezinglevel,wenoticeanextensiveanvilcloud

with analmosthorizontallyuniformpatternof reflectivity. Belowthefreezinglevel,underneaththe

anvilcloud,thereis abrightbandthatis about0.5km in thickness. In theconvectivetowers,there

is intenseconvectiverain below the freezinglevel,while there is relativelylight stratiform rain

beneaththebrightband(seeFigure2c). Noticethereis a smallregionreferredto astheBounded

WeakEchoRegion(BWER) between88.4° W and 88.5° W in thelayer from 2 km to 6 kin,

whichis attheoriginof theanvilcloud. Sucha BWER hasbeendescribedin earlierstudieswith

thehelpof observationsmadeby ground-basedradars(seeHouze,1993). This descriptionof the

7



_, 5
q¢

0

A

i-

r_ 200

m 150

100

PR Reflectivity (dBZ) a

...... ...| ......... • ......... | .........

......... | ......... • ........ - i .........

120

,oo IIA t
80

60

4O

-91 -90 -89 -88 -87
LONGITUDE

Figure 2: Vertical cross-sections of a) PR reflectivity, b) TMI T19, T37, and T85, and c) PR near-

surface rain rate for the MCS presented in Figure 1 (see text for details).



reflectivity pattern and rain rate associated with a MCS is helpful in relating the TRMM PR

observations with those of TMI.

In Figure 2b, the brighmess temperatures measured by TMI in the 85, 37 and 19 GHz

channels are shown along the sub-satellite track to correspond to the cross section of PR reflectivity

shown in Fig. 2a. Note that TMI data shown in the figure are interpolated to the intersections of the

conical-scans and the sub-satellite track. The PR data on the other hand are direct measurements

along the sub-satellite track. In the response of the 85 GHz channel, we find there is a strong

scattering depression due to relatively dense ice particles (Spencer et al., 1983) where the convective

towers are present, but some of the individual towers shown if Fig. 2a are not well resolved in Fig.

2b. The anvil in the stratiform region produces weaker scattering depression. Over the entire

cross-section domain, the response of the 37 GHz channel is similar to that of the 85 GHz channel,

except that the scattering depression in 37 GHz is not as strong. The response in the 19 GHz

channel is the weakest of the three channels. The interrelationship between TMI measured T85,

T37, and T19, and the PR measured Z and R, is only crudely reflected in Figs. 2a-c, because of

differences in the resolution of the TMI and PR data.

2.B. Convective and Stratiform Regions

One may notice from Figs. 1c-e, that the measurements made by TMI do not match closely

in space with the ned_r-surface r_n .rate deduced from PR. A!t!a.ou_h. PR and TM! data are nearly

simultaneous, such spatial mismatch is produced due to several reasons: a) the conical scanning

geometry of TMI versus the cross-track scanning geometry of PR (Hong et al., 2000), b)

differential advection and c) evolution of the hydrometeors in their transit from upper layers to

lower layers in the atmosphere. This spatial mismatch is acute for the TMI 85 GHz channel

because this channel responds to ice hydrometeors above the freezing level. For the 37 GHz

channel this spatial mismatch is less severe, since it responds to lower layers of the atmosphere. In



this study,weareinterestedin comparingtheinformationcontentof PR with thatof TMI datain

the 85,37 and 19GHz channels.For this purpose,wehaveassumedthataveragingspatiallythe

PR and TMI dataminimizesspatialmismatchproblems. In particular,we chooseto averagePR

reflectivityatseveralaltitudesandrainratenearthesurface,andtheTMI datain the85and37 GHz

channels,over the 19 GHzfov @18x30km2). All TMI and PR dataaveragedto the 19 GHz

footprintsaredenotedfromhereatterwith anasterisk(*).

ThePRdatashowthatrainratecanbehighlyvariablewithina 19GHzfov. In thisfov there

canbe about 30 PR footprintsof 4.3 km x 4.3 km size. These30 footprints canbe sorted

accordingto the PR classificationashavingno rain, stratiformrain,or convectiverain. In this

study,a given 19GHz fov that has a fractional area of convective rain that exceeds 50 % is

categorized as convective. Similarly, a given 19 GHzfov that has a fractional area of stratiform rain

that exceeds 80 % is categorized as stratiform. Of all the 19 GHz footprints in a MCS, only about

20 % meet these strict criteria of convective and stratiform nature. In order to obtain a sufficient

sample of such convective and stratiform data for detailed analysis, we have utilized 20 MCS rain

events observed by the TRMM satellite over diverse land regions of the tropics. To reduce

contamination from wet land surfaces, the data where the polarization difference between the vertical

and horizontal channels in the 19 GHz is greater than 5 K are eliminated.

Utilizing the data set described above, in Figure 3a we present a plot of T85" and the

corresponding PR rain rate, R*. From t_his plot, we see that R* characteri..'zed as cony _ecti_'veby the

PR have relatively high rain rates and R* characterized as stratiform have generally low rain rates.

There is a lot of scatter in the data, however, generally R* increases as T85" decreases.

To further enhance statistical strength of the data shown in Fig. 3a, we have performed

additional averaging of the PR and TMI data. First, T85', T37", T19, R*, and Z* are sorted

according to the T85" value. Then, in each 20 K interval of T85", the values of T19, T37" and
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T85" are averaged to produce (T19), (T37 *), and (T85 *). Similarly, the data from PR- i.e., R*

given by PR and the reflecfivity, Z*, at individual altitudes - are averaged to produce (R *) and

(Z *). This has been done separately for convective and strafiform regions using the data from the

20 MCS events. In Tables la and lb, {T19), (T37"), (T85"), (R *) and (Z*) are presented.

Each column in these tables represents a sequential 20 K interval in T85" and is identified

alphabetically. The number of data that are averaged in each column is also shown in the tables. It

may be pointed out that the standard deviation of all observations of Z* at each altitude for a given

T85" interval of 20 K has a magnitude that is comparable to the mean value itself. This suggest

that there is a large diversity in the profiles for a small range in the brightness temperatures. Note,

in the stratiform rain areas the magnitude of (Z *) in the reflecfivity profiles decreases below the

melting layer. This decrease can be noticed all the way to the surface in Table lb, and is apparently

due to evaporation of rain drops below the freezing level. In each column of Tables la and lb, we

also present information pertaining to convective (C) and strafiform (S) rain fractions within a 19

GHzfov. Since these two rain fractions do not add up to 100 %, we can infer the rain-free area in

each column. From Table 1a, we note on a scale of the 19 GHz for the rain rate increases as the

convective rain fraction increases.

Taking the averages given in Tables la and lb, we present in Figure 3b the relationship

between (R *) and (T85 *) for the convective and stratiform regions. This figure shows that by

substantially averagi_n_g t_he data, the noise in the Tbs produced by the. three sources of spatial

mismatch mentioned earlier is reduced, and a clear relationship between (R *) and (T85 _) emerges.

As indicated by theory, the convective rain rate increases non-linearly as (T85 "_) decreases due to

scattering by ice particles. The stratiform (R *) increases slowly until (T85 *} decreases to about

220 K, due to scattering by ice aggregates.
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Table 1: Averageof PRandTMI datawithin agiven20K intervalof T85" for a) convectiveand
b) stratiformrain. Theseaveragesare: (T19), (T37*), (T85 *), (R *) and (Z *). Also, convective

and stratiform rain fractions are given. Note that (Z *) is given for 1, 3, 4, 4.5, 6, 7, 9, and 11 km

altitudes. The number of observations in a given T85 interval is also shown in these tables. The
observations used to generate these statistics associated with convective and stratiform rain is
deduced from 20 MCS cases over land regions.

a) Convective Rain Statistics

T85
Interval

(K)
# of
Obs.

A

110-130

B

130-150

C

150-170

D

170-190

102

E

190-210

139

F

210-230

132

G

230-250

78

H

250-270

5121 48 48

(T85") 121.9 140.4 159.0 181.2 200.2 219.5 239.1 259.9

(K)
(T37") 200.1 215.5 229.5 244.4 252.5 258.7 265.3 271.2

(K)
257.8 261.4 266.4 271.7 274.4 275.8 278.4 280.0

77 73

(T19)

(K)
83C

%

728791

S 8 9 15 22 25 23

%

(R *)
51.2 43.0 31.2 25.6 22.7 20.2

( rr)
(Z *) @ 1.4E5 1.2E5 6.9E4 4.0E4 3.5E4 2.7E4

lkm

(Z*) @ 1.4E5 1.1E5 6.7E4 3.1E4 2.3E4 1.8E4

3km

(Z*) @ 1.1E5 7.9E4 4.6E4 2.2E4 1.6E4 1.3E4

4km

8.3E4 6.0E4 3.3E4 1.5E4 1.1 E4 9.4E3

3.2E4

1.6E4

<z*>@
4.5km

3.9E3

1.9E3

4.6E2

2.1E2

<z*>@
6km

<z*>@
7km

2.1E4

1.0E4

2.9E3

1.4E3

4.2E2

1.9E2

2.7E3

8.2E2

<z*>@
9km

<z*>@
llkm

2.1E3

7.9E2

2.4E2

9.6E1

4.9E3

1.1E4

5.9E3

65 64

29 24

14.2

1.4E4

10.6

1.2E4

1.1E4 8.0E3

9.3E3 7.0E3

7.2E3 5.6E3

1.8E3

7.2E21.5E3

1.4E3 1.6E3

5.0E2 6.6E2

1.5E2 2.0E2

7.3E1 3.5E1
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b) Stratiform Rain Statistics

A B C D

T85
Interval 190-210 210-230 230-250 250-270

(K)
201 587 668 562

Obs.

(T85 *) 204.4 220.4 240.4 257.2

(T37 *) 257.9 260.4 265.1 271.2

(K)
(T19) 275.9 277.2 279.3 280.7

(K)
C 6 4 2 1
%

S 94 96 97 95
%

(R *)
6.0 5.9 4.2 2.0

l'nlTl

(---_-)
(Z *) @ 4.3E3 3.9E3 2.2E3 7.8E2

lkm

4.7E3 4.4E3 2.5E3 9.4E2(z*)@
3km

(z*)@
4km

4.9E3 6.2E3 4.2E3 1.6E3

(Z*) @ 1.5E3 3.3E3 2.6E3 9.1E2
4.5 km

2.5E2 2.7E2 1.8E2 1.0E3(z*) @
6km

1.6E2(z*) @
7km

1.1E21.7E2 6.5E1

(Z *) @ 8.3E1 6.8E1 3.7E1 1.3El
9kna

3.2E1 1.9El 6.6E0 1.9E0(z*) @
llkm
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In Figures4aand4b,wepresentplotsof (Z *) at differentaltitudesin the atmosphereasa

functionof (T85*) using the data given in Tables la and lb. From Fig. 4a, we find that as (T85 *)

increases from 120 K to 260 K, logl0(Z *) decreases systematically. In Fig. 4b, where the data for

the stratiform rain are presented, we find that as (T85 *) increases from about 200 K to 260 K,

log_0 (Z *) also decreases systematically. The exception to this systematic decrease in the stratiform

data is found when (T85 _) is near 200 K. This is likely due to evaporation below about 4.5 kin.

In convective rain, despite the problems related to viewing geometry, the PR and TMI

observations shown in Fig. 4a demonstrate that there is a relatively strong relationship between

(T85 *) and the vertical profiles of (Z *). The brightness temperatures (T19) and (T37 *) have a

weaker relationship with the radar reflectivity as shown in Table la. From this table, we note that

the range in the values of (T85 *), (T37 *) and (T19) from Column A to Column H are about 138

K, 71 K, and 23 K, respectively. The corresponding range in (R*) is about 41 mmhr l. In the

relatively pure stratiform regions, the ranges in (T85 *), (T37 *), and (T19) are significantly

reduced. In particular, the range of (T85 _) from Column A to D in Table lb is only about 70 K.

Furthermore, in the stratiform regions the rain rate, as well as its range, are only a few mmhr -a.

Based on the data shown in Tables la and lb, we note that for a given set of brightness

temperatures-i.e._ (T19)_ (T37 *) and (T85 *) - one can get widely different rain rates depending

on the type of rain that is being observed. As an example, one can compare the data shown in

Column F of Table la and Column B of Table lb. From these columns, we note when (T85 *) is

close to 220 K, (T37 *) and (T19) are close to 259 K and 276 K, respectively. However, we find

near-surface rain rate, (R *), deduced from PR for the convective rain is 20.2 mmhr _, while it is 5.9

mmhr -_for the stratiform rain. This implies that on average the multi-channel radiometer data has a

poor ability to discriminate rain of different types, and thus can incur large errors in estimating rain

13
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rate. Thus, specifying the nature of rain with information other than the magnitude of the

brightness temperatures is necessary to estimate rain rate satisfactorily.

The observations of TMI and PR shown in Tables la and lb can be simulated theoretically.

In the study ofPrabhakara et al. (2002), the average reflectivity profiles of PR presented in Tables

la and lb for convective and stratiform rain are utilized along with radative transfer theory to

calculate the brightness temperatures in the 85, 37 and 19 GHz channels of the TMI microwave

radiometer. Details pertaining to the radiative transfer formalism, profiles of hydrometeors, and the

results associated with these convective and stratiform simulations are presented in that study.

These calculations lead us to infer that the link between the vertical profile of the reflectivity and the

brightness temperatures measured by the radiometer, as shown in Tables la and lb, can be

simulated satisfactorily with theory. However, in these simulations, specification of a number of

parameters is needed. These parameters pertain to the PSD, density, and phase - i.e., liquid, frozen,

or mixed - of the hydrometeors in a vertical column of the atmosphere.

3. Discrimination of Cbs in MCSs Using TMI Data.

Since we cannot perfectly discriminate convective rain from stratiform rain using the

microwave radiometer data, we have followed an alternate approach to retrieve rain from the TMI

data. The TMI rain retrieval method developed in this study depends on our ability to discriminate

strong and weak Cbs in the rain area. Based on the similarity b .etween spatial patterns of rain rate,

R, observed by PR and T85 measured by TMI, we have developed a method to discriminate these

Cbs. We find that local minima in the T85 data, T85min, relate closely in space to local maxima in

rain rate given by PR (see Figs. 1e and 1f). In Figure 5, the scheme used to identify local minima

in T85 is illustrated. These minima represent Cbs that typically have a scale of about 20 km. Two

parameters from the TMI 85 GHz data are deduced to characterize the nature of rain in each Cb.

14



Conical
Scans

X X

x 3 x

Cb Extent:

10 km from

Y85min

19 GHz fov

For TMI, Ax = 4.6 km, Ay = 13.9 krn

Local Minima Definition

When T85o < T851 and T852,

Then T85mi n = T85o

Approximation of Laplacian at Local Minima

dT85 = A(T851 + T852) + B(T853 + T854)_ CT85 °
dr 5PT

dT85 = 2A(T851 + T852 _ 2T85 o)
dr 3vr

A=I/4Ax, B=I/4Ay, C=(Ay/Ax+I)/2Ay

IF dT85 dT85
THEN --_ = --_----lsvr

ELSE drr dr 3vr

Figure 5: TMI scan pattern showing the centers of 85 GHz footprints; the beam effective field

of view of the 19 GHz (see also Kummerow et al., 1998); and a 10 km Cb that is collocated with

a 19 GHzfov. Also illustrated is the method to determine the location of a T85 minimum,

T85min, and the mean spatial gradient, dT85/dr , around this minimum.



Thefirst is themagnitudeof T85m_n,whilethesecondis theLaplacianof T85, V2T85, surrounding

thatminimum.

IdeallythisLaplacianshouldbeevaluatedusingtheT85 valueat theminimumandat four

adjacentdatapointsthatareequally-spacedalongorthogonaldirections. However,weapproximate

this procedure,asdepictedin Figure5, with the dataat the points 0 through4. Three of these

points, which include the minimum, are along one scan line, while the two others are on adjacent

scan lines. The radially-averaged gradient of T85 using these five points, i.e., dT85/dr,

approximates the value of the Laplacian at the minimum. Here, r is the radial distance with respect

to the minimum. However, when this five-point scheme is used to compute the Laplacian, its

magnitude is often underestimated. This is due to the wide spacing (-14 kin) between successive

conical scan lines of the TMI radiometer (see Fig. 5). When this underestimation occurs, we

assume that the Laplacian may be further approximated using only the data from three successive

points along a scan line.

In order to distinguish weak Cbs from strong Cbs, we utilize the parameter dT85/dr.

From observations of TMI and PR, we find that when dT85/dr has a magnitude greater than 1

Kkm 1 at the location of a minimum in T85, generally there is a strong Cb at that point (PIWD,

2000). When this gradient is less than 1 Kkm 1 at the location of a minimum in T85, that Cb is

generally a weak one. As an example, a map of the Cbs identified in this manner is shown in Fig.

If. Once a Cb has been determined to be strong or weak, T85 and (T19-T37) close to the center of

the Cb can be used to determine average rain intensity in the Cb. In this study, each Cb is assumed

to have a radius of 10 km from the Cb center. A Cb of this scale can influence five footprints along

a conical scan line: the central local minimum, and the two adjacent 85 GHz footprints on either side

(see Fig. 5). Any remaining 85 GHz footprints lie completely outside the influence of Cbs.
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In order to demonstratetheusefulnessof the aboveCb discri inafionmethod,wehave

isolatedT85", T37", T19, andR* belongingto threerain categories:strongCbs,weakCbs, and

regionsoutsideof Cbs. Thesedataaretakenfromthe20MCSrain eventsreferredto in Section2.

In Table2, in eachcategoryaveragesof R*, T85", and(T19-T37*) havebeencomputed. These

averages are respectively denoted as R *, T85 *, and T19 - T37 *. We also show in Table 2, the

population of the data for the above three rain categories. The information associated with the three

rain categories, along with corresponding percentages of convective and stratiform rain given by the

PR, are presented in this table.

Table 2: For 1) Strong Cbs (dT85/dr > 1 Kkm-l), 2) Weak Cbs (0< dT85/dr < 1 Kkm-1), and
3) Areas Outside of Cbs inferred from TMI data: PR observed convective and stratiform rain

fractions and rain rates, R *; and TMI observed T85 * and T19 - T37 *.

Cb Data Conv Strat _ T85 *
Category Count Rain Fraction Rain Fraction

(%) (%) (mmhr") (K)

Strong 296 42 48 12.6 212.0
Weak 522 11 83 5.5 225.3

Outside 2655 3 31 0.8 262.7

T19 - T37 *

(K)

12.6
5.5
0.8

From Table 2, we note that the convective rain fraction and rain rate decrease substantially

from the strong Cbs to the weak Cbs, while the stratiform rain fraction behaves in an opposite

manner. It is dT85/dr used in our method that is responsible for crudely identifying these

categories. The number of data outside of the Cbs is large, and several of them are close to the edge

oftahe rain area. Due to partiN footprint coverage, this leads to relatively small R * and warm T85 *

in this category. Partitioning the TMI data using the method described above helps considerably in

the formulation of the rain retrieval method developed here.
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4. TMI Rain Retrieval Method

In Section 2.A, we showed that the information about PR rain rate in Fig. 1e is best revealed

by the TMI observed (T19-T37) and T85 presented in Figs. lc and ld, respectively. In order to

appreciate the rain information conveyed by T85 and (T19-T37), we show in Figure 6 average PR

rain rate as a function of these two TMI variables. From this figure, we note that generally rain rate

increases as (T19-T37) increases, while it increases as T85 decreases. This behavior tends to be

non linear. In addition, a Cb component of rain is imbedded in the average rain rate shown in Fig.

6. This contributes to large variability in the rain information shown in this figure. In this study, as

pointed out earlier, the convective rain from Cbs is inferred with the help of the variable dT85 / dr,

calculated at local minima in T85. From this discussion, we choose to express the relationship

between R and the TMI measurements as follows:

dT85

R=J[ (T19 - T37), T85, ---_[T85 n_n]

(1)

However, in this equation dT85/dr serves only as a gross parameter to represent the variables that

are necessary to retrieve rain rate, i.e. PSD, density, and phase - liquid, frozen, or mixed - of the

hydrometeors in a vertical column of the atmosphere. So, for the purpose of retrieving rain rate

from the radiometer data, it is preferable to simplify this non linear function given in Eq. 1

empirically with the help of TMI and PR observations.

In the current TMI-V5 Algorithm, a statistical regression equation developed by Grody et al.

(1991) is incorporated into the Bayesian procedure to make rain rate estimates over land from the

TMI data. There is scope to improve this method, because this regression formalism does not

satisfactorily discriminate convective and stratiform rain types (Kummerow, 2001). In the present
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Figure 6: Plot of PR rain rate (mmhr -1) averaged in discrete bins of 2 K for (T19-T37) and 5 K for T85, utilizing the TMI and PR data

from 20 MCS cases over diverse tropical land regions.



study,we havecreateda rain retrievalmodel that crudelydifferentiatesrain types,as shown in

Table2.

In our rainretrievalalgorithm,referredtohereafterastheTMI-Cb Algorithm,wescreenout

thedatausingthepolarizationdifferencein the 19GHz channel.Then,we assumethereis a very

weak(background)rain rate,RB,at every85 GHz footprintwhereT85is lessthan270 K. Since

thereis no rigoroustheoreticalbasisto assignzerorain rateto aparticularbrightnesstemperature,

basedon theTRMM observations,weassumethatrain rateis 0.0mmhr-1whenT85 is equalto or

greaterthan270K. Also,we infer from theradarobservations(Fig.3b) thatwhenT85 is lessthan

200 K therain is dominantlyof convectivetype,whilewhenT85is greaterthan200 K thereis a

mix of convectiveandstratiformrain. For this reason,in our rainretrievalmethodweassumethe

non-linearrelationshipbetweenthebackgroundrain rate,RB,andT85 may be approximatedwith

two linearsegments,ThesesegmenthavedifferentslopesandabreakpointatT85 equalto 200 K.

Theserelationshipsfor backgroundrain ratesareexpressedwith appropriateconstantsB1andB2

asfollows:

RB= B1(270- T85)
RB 70B1+B z(200-T85)

when 270 > T85 > 200K

when T85 < 200K

(2)

The constants B 1 and B 2 have values of 0.075 and 0.15 mmhr-_K 1, respectively. On the basis of

Eq. 2, the areas outside of Cbs, where T85 is typically greater than 200 K, will have a very weak rain

rate (< 5 mmhr_). On the other hand, when T85 is significantly less than 200 K, which typically

occurs within Cbs, the background rain rate inferred from Eq. 2 can be higher than 5 mmhr 1. We

relate RB to T85 because it responds strongly to ice aggregates in stratiform rain regions, and as a

result is better suited to estimate very weak rain rates.
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In theTMI-Cb Algorithm,eachstrongandweakCb is assumedto havea 10km radius

from thecenterof theT85minimum. Within theseCbs,weassumethebackgroundrain rate,RB,is

enhancedwith a Cb componentof rainrate,Rr.

GHzfootprintis givenby thesumof RBandRr.

T37),T85,and dT85/dr at the T85 minimumis utilized.

simpleequation,whichhasthefollowingform:

Thus,anestimateof thetotal rain rateat any 85

To retrieveRr, informationpertainingto (T19-

For this purpose,we haveadopteda

Rr = _z[(T19-T37)- fl(T85'-T85._,)] .
(3)

In this equation, c_ and 13 are constants, and T85' is a referencevalue of 85 GHz brighmess

temperature. Separate relationships of the above form are developed for strong Cbs (dT85 / dr > 1

Kkm -1) and weak Cbs ( 0 < dT85 / dr < 1 Kkm-l).

Analogous to Equation 2, we relate rain rate in the weak Cbs, Rrw, to TMI observations with

two equations. As remarked earlier, the T85 value of 200 K delineates crudely a transition in the

nature of rain. For this reason, to determine Rrw one equation is used when T85=n is less than 200

K, and another equation is used when T85m_. is greater than 200 K. These equations are given as

follows:

fR w = W 1[(T19- T37)- D(270- T85._.)]/
Weak Cbs _ (4)

R w W 2 [(T19- T37)- D(270 - T85mi,) ]

,1-,O

-.hen 270K > _ O5min > 2OOK

when T85mi n _ 200K

Similarly, to determine the rain rate in strong Cbs, Rrs, two such equations are adopted as follows:
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Rs= $1[(T19- T37)- D(270- T85_n)]
StrongCbs (5)

Rs $2[(T19- T37)- D(270- T85min)]

when270K> T85r_n> 200K

whenT85_n< 200K

Note, the constants in Eqs. 2, 4 and 5 - i.e., B1, B 2, WI, W 2, S_, S2, and D - are calibrated using the

PR observations taken from a limited number of MCS cases (20) in diverse land regions over the

tropics. Given the value of these constants (see Table 3), the scheme is applied to the TMI data to

retrieve rain over several 5°x5 ° land regions for a period of three months.

Table 3: Values of the constants used in Eqs. 2, 4, and 5.

D B 1 B 2 W 1 Wz Sl $2
0.133 0.075 0.15 0.25 0.7 0.5 0.7

5. Results

We have estimated rain rates over 5 °x5 ° (lat. x long.) areas for 5 different land regions in

the tropics. These retrievals are performed for each overpass of the TRMM satellite within each

land area for a three month period. The details of these regions and the time periods are presented

in Table 4.

Table 4: List of 5°x5 ° !and regions and the time peri_'_odsused m our analysis.

Region Lat Bounds Long Bounds Number of Season
Overpasses

Amazon -8.5 : -3.5 -68.5 : -63.5 124 DJF:2000-1

Australia -18.8:-13.8 130.3:135.3 132 DJF:2000-1
India 20.0 : 25.0 79.0:84.0 150 JJA:2000

Nigeria 5.5 : 10.5 7.5 : 12.5 127 JJA:2000
SE Asia 17.5 : 22.5 99.5 : 104.5 144 JJA:2000
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Fromeachoverpassof the TRMM satellite in a given 5°x5 ° region, we have calculated area-

average rain rate, R A, defined as follows:

N

ER_ (6)

R A _ n=l
N

In this equation, N represents the total number of data coveting the portion of the 220 km PR swath

in the 5°x5 ° region. The area-average rain rate for the PR, TMI-Cb Algorithm, and TMI-V5

A A A

Algorithm are denoted as RpR, Rcb, and Rvs. In Table 5a, we show that the correlation coefficient

between RpARand RcAb (-- 0.87) is higher over all tropical land regions when compared to the

correlation given by RpARand RA5 (~0.83). To illustrate this result, in Figure 7 RpARis compared

against R_b and RvA5for the Amazon 5°x5 ° region.

Table 5: Correlation between PR rain rate and rain rates retrieved from the TMI-Cb and TMI-V5

Algorithms. a) Correlation on the large scale (< 220 x 550 km2). b) Correlation on the scale of
the 19 GHzfov (_ 18 x 30 km2).

a) Large Scale

5°x5 ° Region Rc% vs. ReAR RA5 VS. RpAR
Amazon 0.78 0.7
Australia 0.89 0.88

India 0.92 0.87

Nigeria 0.95 0.94
S. E. Asia 0.8 0.75

Mean 0.87 0.83

b) Scale of 19 GHzfov

5°x5 ° Region R*cb VS. R*pR R*vs vs. R*pR
Amazon 0.64 0.54
Australia 0.6 0.5

India 0.64 0.56

Nigeria 0.64 0.56
S. E. Asia 0.69 0.64

Mean 0.64 0.56
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The correlation between the area-average rain rates over the large-scale presented in Table 5

gives only a crude comparison, since such averages are insensitive to the fine spatial details in the

rain pattern. For this reason, we have performed a statistical evaluation of the rain rates given by the

PR, TMI-Cb Algorithm, and TMI-V5 Algorithm averaged on the scale of the 19 GHz fov (see

Section 2.B). These rain rates are respectively represented as R*pR, R*cb and R'vs. Such an

evaluation is particularly valuable, because it can reveal the weakness in a radiometer retrieval

algorithm. In particular, the radiometer techniques have a weakness to discriminate convective and

stratiform rain that is clearly revealed by the radar (Kummerow et al., 2001). In Table 5b, we show

that the correlation coefficient between R*pR and R*cb (- 0.64) is much higher over all tropical land

regions when compared to the correlation given by R*pR and R'v5 (-0.56). As an example, we

present in Figure 8a a scatter plot of R*pR versus R*cb for the Amazon 5°x5 ° region. A similar

scatter plot of R*pR versus R'v5 is presented in Figure 8b. From Fig. 8b, we may note that the bulk

of the rain rates between 0 and 10 mmhr -_ are overestimated in the TMI-V5 Algorithm compared to

the PR. This is not the case with TMI-Cb rain rates, as shown in Fig. 8a.

We may point out that the two TMI derived rain rates averaged on the 19 GHz fov correlate

poorly with the PR rain rate. There are three main reasons for this poor correlation. These reasons

are 1) spatial mismatch between TMI and PR information (discussed in Section 2.B), 2) TMI

brightness temperatures differentiate poorly convective and stratiform rain (see Tables la and lb),

and 3) evaporation and imbedded rain-free areas are not reflected in the TMI data.

In Figures 9a-c, we show maps of the spatial patterns of rain rate for a rain event that

occurred over the Amazon on 8 August 2000 based on the PR, TMI-Cb Algorithm, and TMI-V5

Algorithm, respectively. Compared to the PR and TMI-Cb Algorithm, the TMI-V5 Algorithm

shows rain rates greater than 10 mmhr -1over a large region.
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The improvement in rain retrieval from our TMI-Cb Algorithm results from a) separation of

different rain types with the help of Cbs, and b) use of separate relationships between rain rates and

Tbs for each rain type. This algorithm can be applied to the full 760 km swath of the TMI, which is

well beyond the narrow 220 km swath of the PR observations. As a result, one can obtain better

estimates of latent heat release into the atmosphere (Iacovazzi, 2001) over a wider area, which in turn

can be used to improve general circulation models.

6. Conclusions

Multi-spectral, dual-polarization measurements made by satellite-borne microwave

radiometers do not contain enough independent pieces of information to derive the amount and the

vertical distribution of liquid, mixed-phase, and frozen hydrometeors present in the atmosphere (see

Schols et al., 1999). This leads to uncertainties in quantitative estimation of rain rate deduced from

microwave radiometers pertaining to convective and stratiform rain based purely on radiative

transfer theoretical considerations. In addition, the retrieval of rain from microwave radiometers is

further complicated over land. This is because the spectral signal pertaining to rain in the long

wavelength channels (19 and 37 GHz) is weak over land regions, because of reduced brightness

temperature contrast between the surface and the clouds. Additional information, that is

independent of the spectral measurements, is therefore necessary over land to derive rain

quantitatively.

In the TMI-V5 Algorithm, a multiple regression method, based on brightness temperature

data, is utilized to retrieve rain rate on land from TMI. Since different rain types are not well

resolved in this approach, the contrast in rain rate between them is not represented adequately. On

the other hand, in the TMI-Cb Algorithm developed in this study, special attention is given to

separating the TMI data crudely into different rain types. For this purpose, minima in the spatial

distribution ofT85 are used to identify Cbs. These Cbs have enhanced convective rain, compared
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to themuchlighterrainratespresentin theareasoutsideof Cbs. In addition,theaveragegradient

ofT85 immediatelyaroundeachminimumis usedto distinguishtwo differenttypesof Cbs, strong

and weak. With the help of this discrimination procedure, we are able to deduce a relationship

between the brightness temperatures and rain rate for the two types of Cbs, and areas outside of

Cbs.

Spatial information, derived from satellite infi'ared radiometer observations, has been utilized

empirically in an earlier study by Adler and Negri (1988) for the purpose of obtaining convective

and stratiform rain. However, since microwave data represent properties of the dense layers in

precipitating clouds, and not just a thin layer near the cloud tops, microwave techniques perform

better than infrared techniques in retrieving instantaneous estimates of rain rate (Ebert et al., 1996).

When this TMI-Cb Algorithm is applied to a large volume of TMI data collected over

several 5 °x5 ° tropical land areas for a period of three months, we find that this algorithm can give

improved rain retrievals compared to the TMI-V5 Algorithm. This analysis suggests that the

current TMI-V5 Algorithm applied to the land could be improved by adopting the methodology

shown in this study.

As indicated in this study, the information about rain given by the low frequency channels -

i.e., T19-T37 - can yield better information about convective rain compared to the 85 GHz. For this

reason, to improve t_h.e s_te-of-the-_,'t of rain rekSev_, we contend that _ ,-._li-,meter ha:dng ! 9 and

37 GHz channels with the samefov is preferable to minimize surface contamination. Also, it is

preferable to have a radiometer that has a finer resolution (- 5 - 10 km) for both of these channels.

An important consideration in the TMI-Cb Algorithm is the identification of minima in T85.

Liu and Curry (1998, 1999, and 2000) have demonstrated the usefulness of the 150 GHz channel to

infer ice water content in the upper layers of the troposphere. Because of its higher frequency, for
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thesamesizeof antenna,a channelnear150GHz canyield a spatialresolutionthatis abouttwo

timesbetterthanthe85 GHz. We find that this high extinctionandspatialresolutioncouldbe

extremelyvaluablein isolatingbrightnesstemperatureminimacorrespondingto convectivecellsin

vigorouslydevelopinganddecayingthunderstorms.Also, 150GHz radiationis moreopaqueto

watervaporthanthatat 85 GHz. This makesa 150GHz channelusefulin the middleand high

latitudes,wheresurfacecontaminationbecomesa problemat 85GHz. From theseconsiderations,

we contendthat microwaveradiometerswith a conical-scanninggeometrythat yields spatially

continuousobservationsin a 150GHzchannelwill bevaluablefor theremotesensingof rain.

Understandingtherelationshipbetweenthemeasurementsmadeby microwaveradiometers

andconvectiveand stratiformrain is necessaryfor the future GlobalPrecipitationMeasurement

(GPM)mission(E.A. Smith,personalcommunication).In GPM, a constellationof satelliteswith

microwaveradiometersareexpectedtobeflown withoutanaccompanyingradar. Thiswill alsobe

thecasewith microwaveradiometersonboardtheEarthObservingSystem'sAqua satelliteandthe

JapanesesatelliteADEOS-II. Thus,thepresentstudy hasuseful applicationsfor future satellite

missions.
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Figure Captions

Figure 1: Maps of a) T19, b) T37, e) (T19-T37), d) T85, e) PR near-surface rain rate, and f) local

minima in T85 for a mesoscale convective system observed by the TRMM satellite on 5 June 1998

over the Southeast United States. In Fig. 1f, local minima that are inferred to be strong and weak

Cbs from the T85 spatial information are denoted with the letters S and w, respectively. Note that

the brighmess temperatures T19, T37, and T85 represent vertical polarization measurements.

Figure 2: Vertical cross-sections of a) PR reflectivity, b) TMI T19, T37, and T85, and e) PR near-

surface rain rate for the MCS presented in Figure 1 (see text for details).

Figure 3: Scatter plots of a) R* versus T85", and b) (R *) versus (T85 *) based on PR and TMI

observations of 20 MCS cases over diverse tropical land regions. The open circles in the plots

denote observations from convective regions, while the filled circles represent observations from

stratiform regions.

Figure 4: Average PR reflectivity, (Z *), at different altitudes versus (T85 *) for a) convective and

b) stratiform rain. The symbols denoting the various altitudes are shown as an inset in Panel b.

Figure 5: TMI scan pattern showing the centers of 85 GHz footprints; the beam effective field of

view of the 19 GHz (see also Kummerow et al., 1998); and a 10 km Cb that is collocated with a 19

GHzfov. Also illustrated is the method to determine the location of a T85 minimum, T85min, and

the mean spatial gradient, [d T85/dr l, around this minimum.

Figure 6: Plot of PR rain rate (mmhr -1) averaged in discrete bins of 2 K for (T19-T37) and 5 K

for T85, utilizing the TMI and PR data from 20 MCS cases over diverse tropical land regions.
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Figure Captions (Continued)

Figure 7: Scatter plot of large-scale, area-averaged rain rates RpAR versus RcAb and RvA5 for the

Amazon 5°x5 ° region (see text for details). The correlation between RpARand RCAbis 0.78, while it

is 0.70 between RpARand Rvv5.

Figure 8: Scatter plots of a) R*pR versus R*cb , and b) R*pR VerSUS R*v5 for the Amazon 5°x5 °

region. Note, R*I,R, R*cb , and R'v5 represent averages over 19 GHz footprints.

Figure 9: Rain patterns given by the a) PR, b) TMI-Cb Algorithm, and e) TMI-V5 Algorithm for

a TRMM satellite overpass of the Amazon 5°x5 ° region that occurred on 8 December 2000 (orbit

number 17446).
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Table Captions

Table 1: Average of PR and TMI data within a given 20 K interval of T85" for a) convective and

b) stratiform rain. These averages are: (T19), (T37 *), (T85 *), (R *) and (Z *). Also, convective

and strafiform rain fi'actions are given. Note that (Z *) is given for 1, 3, 4, 4.5, 6, 7, 9, and 11 km

altitudes. The number of observations in a given T85 interval is also shown in these tables. The

observations used to generate these statistics associated with convective and stratiform rain is

deduced from 20 MCS cases over land regions.

Table 2: For 1) Strong Cbs (dT85/dr > 1 Kkm_), 2) Weak Cbs (0<dT85/dr<l Kkm-_), and

3) Areas Outside of Cbs inferred from TMI data: PR observed convective and stratiform rain

fractions and rain rates, R *; and TMI observed T85 * and T19 - T37 '_

Table 3: Values of the constants used in Eqs. 2, 4, and 5.

Table 4: List of 5°x5 ° land regions and the time periods used in our analysis.

Table 5: Correlation between PR rain rate and rain rates retrieved from the TMI-Cb and TMI-V5

Algorithms. a) Correlation on the large scale (< 220 x 550 km2). b) Correlation on the scale of

the 19 GHzfov(~ 18 x 30 km2).
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